If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+22x-13=0
a = 1; b = 22; c = -13;
Δ = b2-4ac
Δ = 222-4·1·(-13)
Δ = 536
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{536}=\sqrt{4*134}=\sqrt{4}*\sqrt{134}=2\sqrt{134}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(22)-2\sqrt{134}}{2*1}=\frac{-22-2\sqrt{134}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(22)+2\sqrt{134}}{2*1}=\frac{-22+2\sqrt{134}}{2} $
| 2^5x-5=16 | | (13+(x/4))*0.3*2.5=200 | | 3/(m+4)-4/m=6 | | x^2-14/3x+49/9=16/9 | | x^2-14/3x+49/9=0 | | 7x-12+60+x=180 | | (t+5)^2=4 | | 3x+18)+66=180 | | 7x-12+60=180 | | 45+9x-17+80=180 | | 4z-14=-6 | | 44+9x+18+5x+20=180 | | 64+68+x=180 | | X^2-51x+50=0 | | X^3-51x^2+50x=0 | | 9x+2=-3x+5 | | −16x^2+149x+108=0 | | 4x-38=98 | | 2x+71.5=130 | | (5x+44)=(8x-13) | | 2x+9+5x-12+7x-41=180 | | m^-3=512 | | 0.49(x+2)=2 | | b+6+8=0 | | 57+x+19=180 | | 3x=21x+81 | | d+11=18 | | 12^x-2=72 | | 4012=p | | S(t)=2.5t | | (x-4)(3x+11)=0 | | 5=7f+8 |